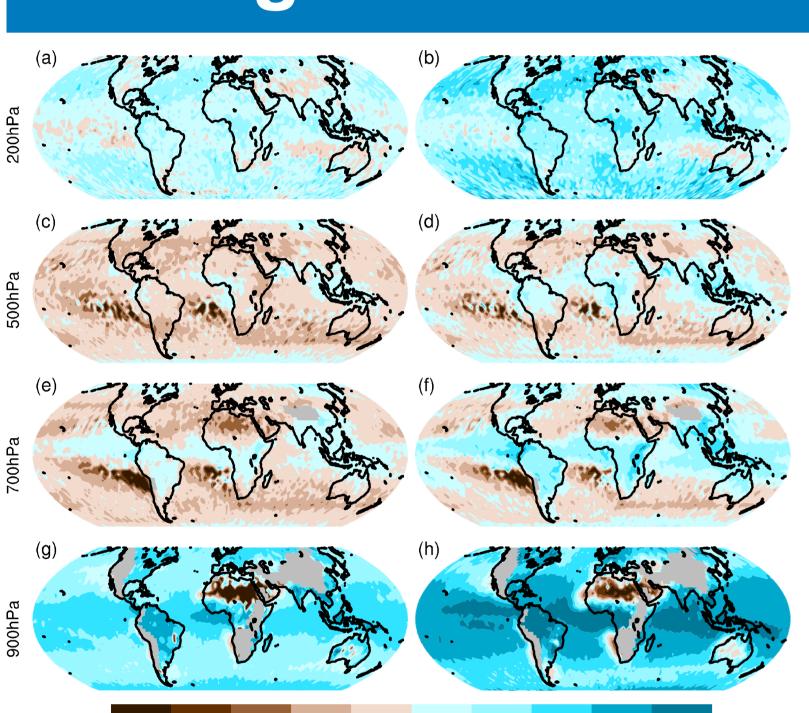


The use of satellite data-based "critical relative humidity" in cloud parameterization and its role in modulating cloud feedback

Xiaocong Wang¹, Hao Miao², Yimin Liu¹, Qing Bao¹, Bian He¹, Jinxiao Li¹, Yaxin Zhao¹


1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 2. Nanjing Joint Institute for Atmospheric Sciences, Nanjing, China

1. Introduction

The critical relative humidity (RHc), which approximately measures the subgrid-scale variability of moisture, is important to cloud parameterization. Based on the diagnostics from CloudSat/CALIPSO satellite data, we propose an improved RHc formula that incorporates geographic dependence and allows for non-monotonic variations in the vertical direction. With the parameterized RHc, a cloud macrophysics scheme is constructed in which fractional cloudiness and subgrid-scale condensation are synergistically solved, with the latter being calculated using two different approaches. Cloud feedback is analyzed under the new scheme.

2. Diagnosis of RHc

$$RH_c = 1 - \frac{1 - RH}{(1 - C)^2}$$

RH: grid-mean relative humidity
C: cloud fraction

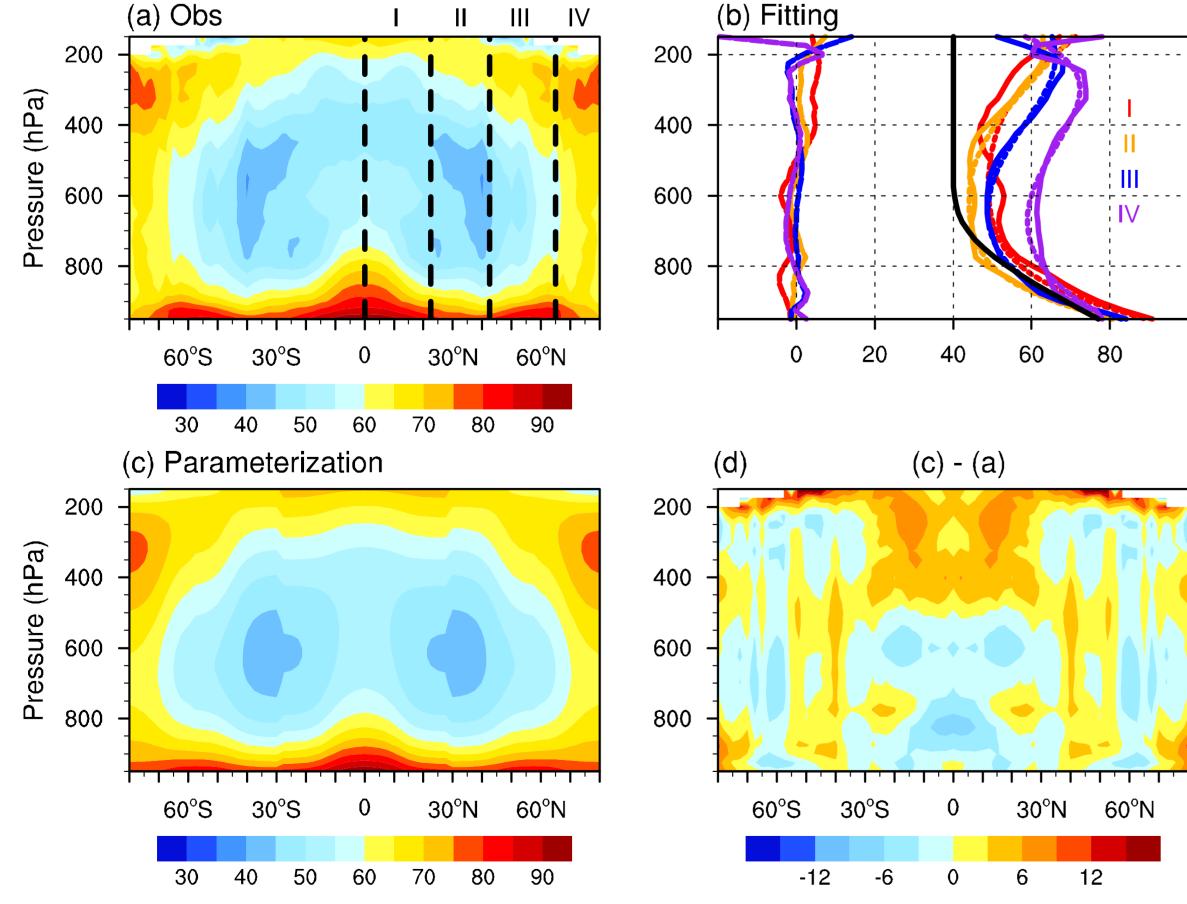
- Lower values in subtropics
- higher ones in inner tropics

Fig. 1. Geographical distribution of CloudSat/CALIPSO diagnostic RH_c (%) at selected pressure levels using the temporal average (left) and least-squares method (right).

3. Parameterization of RHc

In each region, RHc has the general form:

$$RH_{c} = \beta_{1} + \beta_{2} \times \exp\left[1 - \left(\frac{P}{P_{s}}\right)^{\beta_{3}}\right] + \beta_{4} \times \exp\left[1 - \left(\frac{P_{s} - P}{P_{s}}\right)^{\beta_{5}}\right]$$


The coefficients βj are determined by minimizing the cost function, as follows:

$$g = \sqrt{\frac{1}{N} \sum \left(\beta_1 + \beta_2 \times \exp\left[1 - \left(\frac{P}{P_S}\right)^{\beta_3}\right] + \beta_4 \times \exp\left[1 - \left(\frac{P_S - P}{P_S}\right)^{\beta_5}\right] - \text{RH}_c^{\text{obs}}}\right)}$$

The separated RHc is then combined into a single latitude-dependent formula as:

$$RH_{c}(\phi) = \frac{1 - \alpha_{idx(\phi) - 1}}{2} RH_{c}(idx(\phi) - 1) + \frac{1 + \alpha_{idx(\phi) - 1}}{2} RH_{c}(idx(\phi))$$

where ϕ stands for latitude, and "idx" is the index of the region corresponding to latitude ϕ . $\alpha_{idx(\phi)}$ are weighing coefficients satisfying $\alpha_{idx(\phi)} = \tan h\left(\frac{\phi - \phi_0}{D_0}\right)$, where ϕ_0 and D_0 are tunable parameters

Fig. 2. (a) Observed RH_c (%) after symmetrization in the Northern Hemisphere and Southern Hemisphere. (b) Observed (dashed) and parameterized (solid) RH_c profiles in four representative regions, with the differences marked by long-dashed lines. The parameterized RH_c of Quaas (2012) is also superimposed in the figure (solid black). (c, d) Latitude–pressure cross-section of (c) the new parameterized RH_c and (d) its deviation against the observation.

Reference:

X Wang, et al. The use of satellite data-based "critical relative humidity" in cloud parameterization and its role in modulating cloud feedback, *Journal of Advances in Modeling Earth Systems*, 2022, 14(10): e2022MS003213

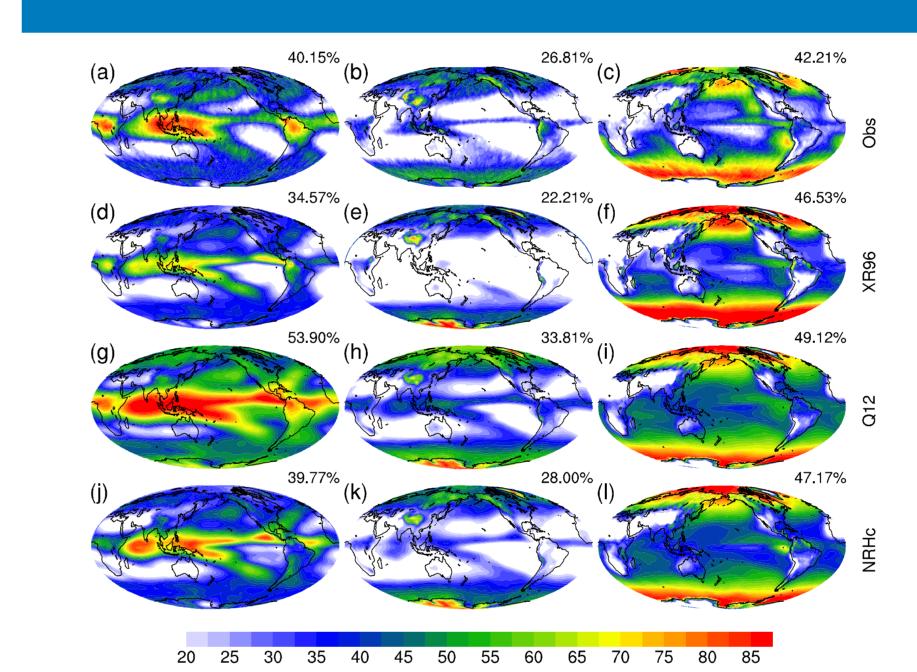
4. Calculation of subgrid condensation

✓ Prognostic method (_prog)

This method retains the property of cloud condensate as a prognostic variable in models. The prognostic equation for relative humidity U is expressed in terms of total water q_t , liquid water temperature T_l , and liquid water q_l :

$$\frac{\partial U}{\partial t} = \alpha \frac{\partial q_t}{\partial t} - \beta \frac{\partial T_l}{\partial t} - \gamma \frac{\partial q_t}{\partial t}$$

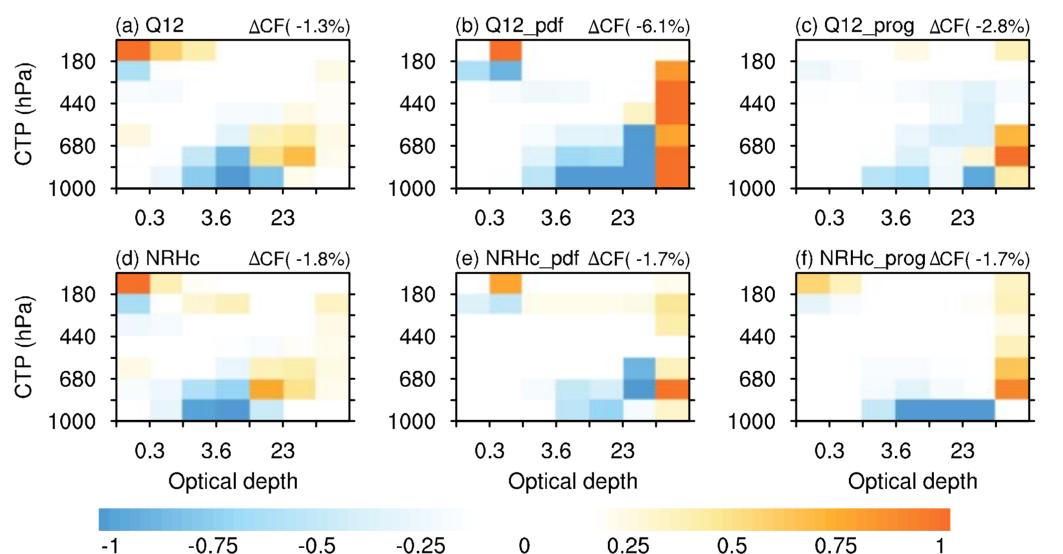
Noting $\frac{\partial U}{\partial t} = 0$ in the cloudy portion, together with the use of $\frac{\partial q_l}{\partial t} = C \frac{\partial q_l}{\partial t} + c_m \dot{q}_l \frac{\partial C}{\partial t}$, equation (8) is further expanded in the following form:


$$\left(1 + C\frac{L}{C_p}\frac{\partial q_s}{\partial T}\right)\frac{\hat{q}_l}{\partial t} + c_m\hat{q}_l\frac{L}{C_p}\frac{\partial q_s}{\partial T}\frac{\partial C}{\partial t} = \frac{\hat{q}_l}{\partial t} - \frac{\partial q_s}{\partial T}\frac{\partial T_l}{\partial t}$$

✓ Diagnostic method based on PDF (_pdf)

With a uniform PDF assumed for total water, one can also obtain a diagnostic formula for cloud condensate, $q_l = \int_{a}^{q_t + \Delta q} (q - q_s) \frac{1}{2\Delta q} dq$

which is further expanded as: $q_l = \frac{(q_t + \Delta q)^2 - q_s^2}{4\Delta q} - \frac{1}{2\Delta q}(q_t + \Delta q - q_s). q_s$


5. Performance on AMIP simulation

- XR96 and Q12 underestimates clouds
- NRHc scheme performs better

Fig. 3. Geographical distribution of high (left column), mid (middle column) and low (right column) cloud cover (%) from (a-c) CloudSat/CALIPSO and simulations using the cloud scheme of (d-f) XR96, (g-i) Q12, and (j-l) NRH_c. The global mean value is shown in the top right of each figure.

6. Cloud feedback analysis

- All simulations show a reduction in globally-averaged cloudiness
- The sensitivity to RHc is smaller in simulations applying RHc in cloud cover alone

Fig. 4. Globally averaged changes in cloud fraction in CTP- τ histograms between the +4 K and control experiments in simulations with different RH_c configurations. The sum of each matrix is shown in the top right of each

- Large discrepancies of cloud feedbacks are found in a single model
- The way to calculate subgrid condensation and the choice of RHc are both important

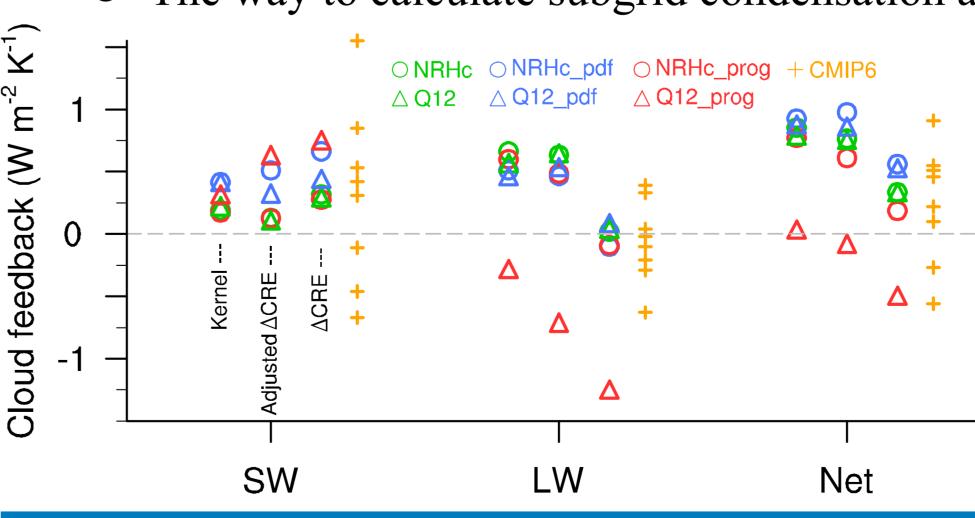


Fig. 5. Global- and annual-mean cloud feedbacks estimated by three different methods in simulations with different RH_c configurations. The multimodel cloud feedbacks estimated by Δ CRE from the CMIP6 APE experiments are also overlaid, with each model represented by a plus sign.

7. Conclusion

- We propose an improved RHc formula that incorporates geographic dependence and allows for non-monotonic variations in the vertical.
- Varying RHc and techniques in calculating subgrid condensation replicates the range of uncertainty found in CMIP6 cloud feedback estimates.
- Varying RHc and its implementation in models leads to the diversity of cloud feedback being mainly due to optically thick clouds